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The phonon dispersion relations along the principal symmetry axes of the hexagonal close-
packed metal scandium have been measured at room temperature by means of inelastic neu-
tron scattering. The results have been analyzed in terms of a sixth-neighbor modified axial-
ly symmetric force-constant model. Both the dispersion curves and the force-constant model
are qualitatively similar to those obtained for yttrium metal and yield long-range interactions
in the basal plane, but interactions which decrease rapidly in the direction normal to the basal
plane. A qualitative discussion is also given concerning the directional nature of the bonding
in hep metals from a consideration of the electron-phonon matrix elements. Evidence has
been found for an anomaly along the A; branch reflecting the nesting feature of the Fermi sur-

face along that direction.
tions in this metal down to 4.2 K.

I. INTRODUCTION AND MEASUREMENTS

Scandium is the lightest element with an outer
electronic configuration (34" 4s? similar to those
of the rare-earth metals. Furthermore, energy-
band calculations® have established that the conduc-
tion electron band structure and Fermi-surface
geometry of scandium are very like those found for
yttrium? (44'5s? and the heavy rare-earth metals
(5d*6s%). The phonon spectra of this family of
metals have recently been investigated by several
groups. Studiesof yttrium,® holmium,*and terbium®
have already been reported. The measurements
reported in this paper represent a continuation of
the study of the phonon spectra of the rare-earth-
type metals in order to investigate the extent to
which the conduction electrons determine the struc-
ture of the dispersion curves.

Some relevant physical properties of scandium
metals are listed in Table I. The crystal used had
a volume of approximately 3.5 cc and was approxi-
mately cylindrical in shape. It was grown by a
modified strain-anneal method.® It was tested for
impurity concentrations of hydrogen, nitrogen, and
oxygen by vacuum -fusion analysis from which the
estimated impurity concentrations were as follows:
H 7 ppm; N 71 ppm; and O 297 ppm by weight, re-
spectively. The measurements were made at 295 K
using the triple-axis neutron spectrometer at the
Ames Laboratory Research Reactor. The apparatus
has been described in Ref. 3. The “constant-@”
technique with fixed incident neutron energy was
utilized. The incident energies used for different
sets of runs were 50, 31, and 20 meV. The lower
incident energies were used mainly to study the
lower-frequency modes under high resolution and
to investigate possible anomalies in the dispersion
curves. Most of the measurements were made using
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An unsuccessful search has been made for paramagnon-type excita-

the neutron-energy-loss process. The one-phonon
peaks in the observed spectra were computer fitted
and analyzed in a manner identical to that described
in Ref. 3 and used to obtain points on the dispersion
curves. Wherever possible, the one-phonon peaks
corresponding to the transverse and some of the
longitudinal branches were measured in the focused
condition of the triple-axis spectrometer. Owing
to the relatively large incoherent scattering cross
section of scandium, some of the peaks correspond-
ing to the relatively flat optical branches were con-

TABLE I. Physical properties of scandium.
Lattice 2=3.309:2 &  ¢=5.268+74
constants
zZ 21
Mass 44.956 amu
Thermal neutron
cross sections ®
Coherent 17.5+1.5Db
Incoherent 6.5b
Absorption 24.0£1.0b
Elastic constants ©
(units of
102 dyn/cm?) 298K 4K
Cq1 0.993 1.032
C33 1.069 1.061
cis 0.294 oo
cu 0.277 0.272
Cgg 0.268 0.294

2K. A. Gschneidner, Jr., in Tvansactions of the Vacu-
um Metallurgy Conference (Am. Vac. Soc., Boston,
Mass., 1966), p. 99.

®D, J. Hughes and R. B. Schwartz, Neutron Cross
Sections, 2nd ed., (U.S. GPO, Washington, D. C., 1958).

°E. S. Fisher and D. Dever, in Proceedings of the
Seventh Rare Earth Research Conference, 1968, Vol. 1,
p. 237 (unpublished).
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taminated by an incoherent inelastic peak in the
scattered neutron intensity resulting from the high
density of phonon states in this energy range, and
hence the errors assigned to these branches are
somewhat large. By and large, the dominant con-
tribution to the error in a particular measured fre-
quency was the statistical uncertainty in the peak
position, as discussed in Ref. 3. In some cases,
however, resolution effects played an important
role in shifting the peak position, as will be dis-
cussed in Sec. IV with reference to the 4; branch.

II. RESULTS

Measurements were made for the principal sym-
metry directions I'A, T'M, and I'KM of the recipro-
cal lattice. Table II gives a list of the final set of
measured phonon frequencies for these directions.
Figure 1 shows a plot of the observed dispersion
curves together with the predictions of the fitted-
force-constant model discussed below. The rela-
tively large scatter for the Z4(TO,) and A,(LO)
branches is due to the contamination by the inco-
herent inelastic peak referred to in Sec. I, and also
due to poorer intensities for these higher-frequency
modes. It is to be noted, that, as in yttrium, 3
there is a high degree of acoustic isotropy in the
dispersion curves, as may also be seen in the mea-
sured elastic constants for scandium at room tem-
perature (Table I). The initial slopes of the disper-
sion curves as given by the measured elastic con-
stants are also indicated in Fig. 1, and it may be
seen that except for the A; branch, the measured
points are consistent with these slopes.

III. FORCE-CONSTANT MODEL AND DISCUSSION

As is well known, the low symmetry of the hexa-
gonal close-packed structure leads, in the Born-
von Karman phenomenology, to a large number of
force constants within a relatively small number of
neighbor distances. The use of the modified axially
symmetric (MAS) force-constant model developed
by DeWames ef al." helps considerably in reducing
the number of independent force constants. How-
ever, there remains a further difficulty, in that
even for the symmetry directions, the eigenfre-
quencies are in general rather complicated nonlinear
functions of the force constants. In order to avoid
the complexities of a nonlinear least-squares fitting
procedure with its attendant uncertainties as to the
position of the “best” minimum, therefore, a pro-
cedure based on obtaining a linear fit to the mea-
sured elastic constants and certain interplanar force
constants obtained from the data was adopted.

The technique is essentially the same as that de-
scribed in detail in Ref. 3. A Fourier analysis of
the quantity w% q) summed over all branches having
the same irreducible representation along a partic-
ular direction yields “generalized interplanar force
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constants ” which are linear combinations of the in-
teratomic force constants. Other linear combina-
tions may be obtained from the elastic constants
Css, (C13+Cyay), Cyqy (Cy3 —Cgg), and the expression
for w? at the symmetry point M. The appropriate
linear relations are listed in the Appendix of Ref. 3.
Finally, by using the above linear relations as well
as solving directly for Cy; alone, the MAS force
constants may be obtained. The analysis revealed
that at the very minimum, a sixth-neighbor MAS
model was required to provide a reasonable repre-
sentation of the dispersion curve. The sixth-neigh-
bor MAS model provides an excellent fit for the T'd
direction, the KM (T, and T3) branches, and a
reasonable fit for the I'V branches, the biggest
discrepancy being of the order of 10% for the

TABLE II. Phonon frequencies in scandium at 295K.

§= (0; Oy g) ><21r/c

A((LA) 25(LO)
¢ v(THz) ¢ v(THz)

0.105 1.05£0.02 0.0 6.91+0.03

0.128 1.31+0.02 0.05 6.89+0.03

0.155 1.59+0.02 0.1 6.83+0.04

0.175 1.66+0.03 0.12 6.69+0.04

0.1875 1.94 +0.03 0.15 6.66+0,04

0.2 1.98 +0.03 0.172 6.51+0.03

0.2125 2.10+0.02 0.2 6.58+0.03

0.225 2.25+0.01 0.257 6.29+0.06

0.2375 2.29+0.02 0.272 6.08+0,03

0.25 2.38+£0.02 0.29 6.09+0.02

0.2625 2.65+0.02 0.3 6.01+0.02

0.275 2.72+£0.02 0.34 5.78+0,.02

0.282 2.80+0.02 0.39 5.50+0.02

0.2875 2.84+0.02 0.44 5.15+0.05

0.293 2.95+0.02 0.491 4.75+£0.02

0.3 2.97+0.02

0.3125 3.15+0.02

0.325 3.24+0.02

0.3375 3.34+0.03

0.35 3.43+0,02

0.375 3.69+0.03

0.3875 3.76+0.04

0.4 3.89+0.04

0.425 4.16+0.02

0.45 4.23+0.02

0.5 4.74+£0.03

A5(TA) 2Ag(TO)
¢ v(THz) ¢ v(THz)

0.1 0.62+0.01 0.0 4,04+0.04

0.15 0.89+0.01 0.05 4.04x0.07

0.2 1.17+0.01 0.1 4.14+0.04

0.25 1.47+0.01 0.15 4.09+0.04

0.3 1.83+0.04 0.2 3.92+0,04

0.35 2.05+0.01 0.25 3.83+0.05

0.41 2.38+0.04 0.3 3.68+0.04

0.5 2.87+0.02 0.35 3.51+0.03
0.4 3.35+0.02
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TABLE II. (Continued)

3=(, 0, 0) x4n/V3a

z,(LA) z,(LO)
¢ v(THz) ¢ v(THz)
0.09 1.75+0.02 0.0 4,04+0,04
0.1 2.00+0.02 0.05 4,08 +0.04
0.125 2.43 0,01 0.1 4.41+0.03
0.15 2.86 +0.01 0.15 4.71+0.03
0.175 3.37+0.02 0.2 5.22+0.02
0.2 3.77+0.02 0.25 5.66+0.02
0.225 4.20+0.02 0.3 5.93+0.04
0.25 4.52+0.02 0.35 5.92+0,04
0.275 4,87 £0.01 0.4 6.05+0.02
0.3 5.22+0.02 0.5 6.23+0.05
0.35 5.70+0.02
0.5 6.21+0.1
23(TAY) 25(TO))
¢ v(THz) ¢ v(THz)
0.1 1.07 £0.01 0.0 6.91+0.03
0.15 1.59+0.01 0.05 6.70+0,03
0.2 2.10+0.01 0.1 6.58+0.06
0.3 3.06 +0,02 0.2 6.59+0,06
0.4 3.75+0.02 0.25 6.51+0.03
0.45 4.08+0,03 0.3 6.38+0.05
0.5 3.97 +£0.02 0.4 6.39+0,.04
0.45 6.11+0.06
0.5 6.23+0,04
= ,(TA,) 2,(TO,)
¢ v(THz) ¢ v(THz)
0.15 1.60+0.01 0.0 4,04 +£0.04
0.2 2.12+0.01 0.05 4,11 +0.03
0.25 2.58+0.01 0.1 4.30+0.03
0.3 2.96 £0.01 0.15 4.55+0.03
0.35 3.30+0,03 0.2 4,88+0,03
0.4 3.49+0,03 0.25 5,15+0,04
0.45 3.69+0.04 0.3 5.49+0,02
0.5 3.57+0.04 0.35 5.66+0,03
0.4 5.90+0,02
0.5 6.11+0.04
=, ¢, 0)x4n/a
T5(TA,) T,(TO,)
¢ v(THz) v(THz)
0.1 1.83+0.01 0.0 6.91+0.03
0.15 2.79+£0.01 0.05 6.87 +0.05
0.2 3.61+0.01 0.1 6.85+0.05
0.25 4,32+0,02 0.2 6.41+0.04
0.3 5.00£0.02 0.25 6.08+0.05
0.4 5.86+0.02 0.3 5.67x0.03
0.45 6.16 +0.07 0.333 5.35+0,03
0.5 6.23 +0.04 0.4 4.68+0.06
0.45 4,19+0.04
0.5 3.97+0.02

TA"(Z,) branch in that direction. The dispersion
curves according to this model are shown in Fig. 1.
The force constants so determined are listed in
Table III, where they are expressed in both MAS
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and general tensor form according to the notation
of Czachor.® Using this model, and the program
HCPGNU developed by Rauberheimer and Gilat® the
frequency distribution function g(v) was calculated
and is illustrated in Fig. 2, where some of the
critical points associated with symmetry direction
points are also indicated. Figure 3 shows the Debye
temperature calculated from g(v) as a function of
temperature. Also shown are the values obtained
experimentally by Flotow and Osborne.!® The
agreement is reasonable in view of the combined
uncertainties in the harmonic approximation using
the room-temperature force-constant model and the
uncertainties in the experimental values. The
force-constant model was also used to calculate the
Debye-Waller factor for scandium. This may be
written as

e =exp{ - (m%/2M)[(KE /k500)G,(T/®)
+ (Kf/ka®o)G.L(T/®o)]} ’ (1)

where M is the atomic mass, (%ZK,) and (ZK,) are,
respectively, the components of momentum transfer
parallel and perpendicular to the basal plane, and
@, is some reference Debye temperature which is
taken to be®at 0 K. For all hcp metals whose pho-
non frequencies scale in the ratio of their @,’s, G,
and G, may be taken to be universal dimensionless
functions of (T/@,). The functions G, and G, for Sc
are tabulated in Table IV.

The contribution to the dynamical matrix may
be split up into an electrostatic interaction between
the ion cores, the ion-ion interaction via the con-
duction electrons, and finally the direct ion-core
“overlap” interaction. For hexagonal metals hav-
ing identical numbers of conduction electrons per
atom and similar conduction electron energy bands,
it may be shown quite generally that the sum of the
first two contributions to the dynamical matrix
scale approximately in the ratio of the respective
squares of their ion-plasma frequencies given by
wz, =4nNe?/M, where N is the number of ions per
unit volume and M is the ionic mass. Therefore
in the small-core approximation, one might expect
yttrium and scandium to have frequencies which
scale in the ratio of their w,’s. Indeed the mea-
sured dispersion curves do look remarkably sim-
ilar and Table V lists w/w, for both metals for
selected points in the zone. It may be seen that
they are within 10% of each other. A similar de-
tailed comparison with the phonon frequencies of
the heavy rare-earth metals has not yet been made
but would be interesting in order to examine the
possible influence of the 4f shells on the dispersion
curves.

The frequency distribution function and the Debye-
Waller functions G, and G, of scandium also look
similar to those obtained for yttrium, the maximum
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discrepancy being about 16% at T/@y=2.

As in the case of yttrium, the interaction between
the origin atom and the fourth neighbor located at
(0,0,c) is small compared to the interaction with
the fifth and sixth neighbors located, respectively,
in the basal plane and the layers adjacent to the
basal plane. This also manifests itself in the fact
that w?(d) along the c¢ axis for both longitudinal
and transverse branches is dominated in each case
by only one interplanar force constant. If we sup-
pose a linear-combination-of-atomic orbitals
(LCAO) approximation is used to represent wave
functions of the conduction electrons in metallic
scandium, then these LCAO’s may be regarded as
made up of s and d orbitals. The d orbitals in a
crystalline field of hexagonal symmetry may be
classified as A,,, Ey,, and E,, where A,, has lobes
directed along the c¢ axis, whereas the others pos-
sess a node in this direction. If the wave functions
of the occupied states of the conduction band are
principally of the E,, and E,, type, then the bond-
ing by means of such orbitals will be very small
between atoms separated along the ¢ axis, as seems
to be the case for Sc and Y. The symmetry prop-
erties of the occupied states of the conduction
bands of a rare-earth-type metal have been classi-
fied at the principal symmetry points of the Bril-
louin zone by Dimmock, Freeman, and Watson. '
Their calculation is actually for gadolinium., How-
ever, as mentioned in the introduction, because of
the similarity of their conduction bands, the sym-
metry properties of the occupied conduction-band
states of Sc can be inferred from those of Gd.
Examination of these symmetry classifications
shows that the A, -type orbital can only be appre-
ciably mixed into the occupied conduction-state

wave functions for the doubly degenerate level

(K5) near K, for the doubly degenerate level (4,)
near A, and possibly for the levels (M,, M,) near

M. The above arguments suggest that in fact the
over-all projection of A;,~-type orbitals in the oc-
cupied density of states is rather small for these
metals. On the other hand, zirconium, which has
one more conduction electron per atom, has a very
flat LO branch along the ¢ axis, suggesting strong
interaction between the origin atom and its neighbors
out along the ¢ axis.'? In this connection, it is
perhaps significant that the calculations of Loucks!?

TABLE III. Force constants for the sixth-neighbor MAS
model. Units are in dyn/cm.

Neighbor GTF notation MAS notation
1 Aj= 3421.2 61= 1999.2
By= —577.2 €4,=—2576.4

Gy= 12641.0 €4,=—2559.9

2 a;= 5322.5 0y= 11793.0
by= 11219.0 Boy= 2374.2

g1= 1525.1 Bag= 1525.1

3 Ay,= 2284.0 b3= —421.3
By,=-4457.5 €3,= 2284.0
Gy=-1222.3 €5,= 1981.1

4 ay= —622.7 Bye= —622.7
g9= —609.7 0 +Byy = —609.7

5 Az= 1738.6 65= 99.9
By= 2138.4 €5,= 539.2

Gy= 111.5 €5,= —648.1

6 az= =—40.5 ag= 1307.3
b= 1266.8 Bex= —40.5

gs= —114.7 Bee= —114.7
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show that in zirconium, the principal bands along
the symmetry directions which become occupied
compared to the rare-earth metals are the doubly
degenerate bands connecting the levels H, and A,
which are allowed near A to mix in A, -type orbitals
in their wave functions, and the bands of symmetry
T{ along KM and U, along LM, each of which can al-
so contain appreciable A, -type orbitals. Thus, it
would seem likely that the addition of an extra elec-
tron appreciably increases the projection of A,,-
type orbitals in the occupied states and hence sig-
nificantly increases bonding along the ¢ axis.

1V. FERMI-SURFACE EFFECTS

The magnetic properties of several scandium-

6.0 7.0

rare-earth alloys have been studied by neutron dif-
fraction'®!® and for a certain minimum concentra-
tion of a rare earth in scandium (about 25% in the
case of Tb in Sc)a spiral spin configuration has been
observed at low temperatures where, of course, it
is only the moments onthe rare-earth atoms which
order. For sufficiently dilute rare-earth concen-
trations the ordering corresponds to a spiral along
the ¢ axis with the magnetic ordering wave vector
d,, converging to a value of (0,0, 0. 28)x271/c. As
is well known, the magnetic structure is determined
by a wave vector g, for which the wave-number-de-
pendent generalized susceptibility function in the
paramagnetic phase, x‘°(§), has a maximum.
Since, for reasons discussed previously, the dilute

L 370
360 X 360 k= _ ———REF(10)
N\,
— \ —PRESENT
® 350 ~° CALCULATION
350 w
> 340
@
X 340 L 8 330
B FIG. 3. Plot of Debye temperature
® 320 vs T calculated from g(v) shown in
w 330 | Fig. 2. Inset shows a comparison
> 310
© | with the experimental results of
u 0 10 20 30 40 50 60 70 80 Flotow and Osborne (Ref. 10).
320 — TEMPERATURE, K
310
oo+ ¢ 4 ovoror oot b
0 100 200 300 400

TEMPERATURE, K
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TABLE IV. The dimensionless functions G,(T/®)
and G,(T/ &) appearing in Eq. (1) for the Debye-Waller
factor.

T/®, Gy(T/®) G.(T/®y)
0.05 1.686 1.752
0.10 3.460 3.599
0.15 5. 386 5.618
0.20 7.521 7.869
0.25 9.901; 10.395
0.30 12.557 13.224
0.35 15.505 16.371
0.40 18.740 19.830
0.45 22. 286 23.636
0.50 26.157 27.795
0.6 34.892 37.191
0.7 44.977 48.052
0.8 56.432 60.397
0.9 69. 269 74.241
1.0 83.498 89.592
1.2 116.16 124.84

1.4 154,45 166.18

1.6 198. 40 213.64

1.8 248.01 266.90

1.95 287.96 309.88

alloys have g, = (0,0, 0. 28)x 27/c, this seems to in-
dicate that x‘°(§) of pure scandium has a maximum
around this wave vector. Further, the diagonal
element of the dielectric function €(d, d) is related
to x'9(d@) by the relation

(@, @) =1+A4v@x @), (2)

where A is a constant and »(q) is the transform of
the electrostatic electron-electron interaction in-
cluding exchange and correlation effects. Since

the dielectric screening by the conduction electrons
plays a key role in determining the ion-ion inter-
action transmitted by the conduction electrons, one
might expect a sharp maximum in x‘¥(g) to manifest
itself also as an anomaly in the dispersion curves.
In fact, it may be shown that one would expect a
sharp dip in the longitudinal acoustic branch at a
4=(0,0,0.28)x2m/c.

A careful search was made for such anomalies in
the A, branch, which included doing several scans
along this branch under varied experimental condi-
tions and at rather closely spaced values of the
wave vector along this branch. Four sets of runs
were made using incident energies of 20,50, 31,
and 31 meV, respectively. The first was run with
neutron energy gain and the other three with neu-
tron energyloss. Thefirstthree were run from the
(004) lattice point in a purely longitudinal configu-
ration (I §) and the last set was run from the
(1, 1, 2) lattice point, thus taking advantage of the
partial focusing provided by some transverse com-
ponent of q.® The best resolution was achieved
for the last set, i.e., for the partially focused en-
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ergy-loss neutron groups around the (1, 1, 2) lat-
tice point with an E; of 31 meV. This scan is
shown in Fig. 4, where it may be seen that there
does seem to be a dip in the dispersion curve be-
tween d = (0, 0,0. 2)x2n/c and = (0, 0, 0. 3)x27/c.
The same effect was in fact seen in each of the
above scans. However, the different sets of runs
had small systematic discrepancies between each
other (due perhaps to systematic instrumental
errors or to the effects of finite instrumental res-
olution) so that the over-all scatter of all measured
points for that branch is at least equal to the size
of the effect. Nevertheless, for each individual set
of measured points, the effect was significant com-
pared to the scatter of points on that branch, so that
the dip, though small in magnitude, is probably
real. Further evidence for this was provided by
the fact that in the region between (0,0, 0. 25)

x2m/c and (0,0, 0. 35)x2m/c the peak shapes of the
scattered neutron groups displayed a broad and
asymmetric shape. If we represent the dip as a
joining of two parts of the dispersion curve with
different slope, the anomalous peak shapes may be
understood in terms of the resolution ellipsoid?®®
cutting through the dispersion surface at different
wave vectors relative to this intersection point in
the course of a constant-@ scan parallel to the

E axis. In such cases the two regions of different
slope will give rise to maximum intensity at differ-
ent E values, resulting in an asymmetric or even
double-humped peak. In order to test this hypoth-
esis, the instrumental resolution function for the
spectrometer was estimated using the theory of
Cooper and Nathans.!® It was verified that this
function gave the widths of various scans across a
number of Bragg reflections correctly, It was
then calculated for the energy transfers involved
for the phonons in the vicinity of the anomaly. This
was then numerically folded along the E axis with

TABLE V. (v/v,) of scandium and yttrium for some
symmetry points.

/vy scandtum W/v)yttrsum
T; 0.215 0.230
L 0.367 0.398
A 0.252 0.275
A, 0.158 0.168
M3(LA) 0.330 0.345
M(TOy) 0.331 0.355
Mj(TA,) 0.190 0.197
M3(TO,) 0.324 0.347
M3(TA,) 0.211 0.229
K, 0.284 0.294
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FIG. 4. The A; branch for scandium measuxred with
Ey,=31meV from the (I, T, 2) reciprocal-lattice point.
The error bars represent only the statistical uncertainty
in the peak positions of the neutron groups.

a dispersion surface represented by two semi-in-
finite planes with different slopes c, and c, inter-
secting at (0,0, ¢{)x27/c. If ¢, and ¢, were chosen
as 7.5 and 9.0 THz A, respectively, and ¢ was
chosen as 0. 27, it was found that good agreement
was obtained for almost all the peaks obtained
for the A, branch in this region, including the sets
of runs with quite different instrumental conditions.
Figure 5 shows the computed and observed line
shapes for some of the peaks in the anomaly region
for the highest-resolution set of runs shown in
Fig. 4. One may observe how the asymmetry re-
verses itself as the wave vector in question goes
from one side of the anomaly to the other. It is
to be noted that neither of the peaks in the double-
peak structure has a position corresponding exactly
to the value of the actual frequency for the set wave
vector. Further, the effect of taking the mean of
the scattered neutron group, as was conventionally
done in this analysis, is to smooth the effect of
the dip but not to remove it entirely. Tosummarize,
an analysis in terms of the resolution function con-
firms that our observations on the 4, branch are
consistent with a dip or anomalous change of slope
at §=(0,0, 0. 27)x 27/c which is remarkably close
to the value for the peak in x'©(§) for Sc estimated
from the magnetic-structure data.

The peak in x‘®(d) probably arises from a “nest-
ing” feature of the Fermi surface in scandium along
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the ¢ axis as has been pointed out by several au-
thors.'™!® The energy-band calculations of Fleming
and Loucks'! were used together with the programs
devised by Liu et al.'® to evaluate x‘°(§) using the
approximation for the (unenhanced) susceptibility
function,

n(k, b) -n(ﬁ+§, b')
0o E(K, b) —E(K+q, ")

x0@)= ®)

where n(ﬁ,b) denotes the occupation number for

the state with Bloch wave vector K and band index
b, and E(k,b) is the appropriate energy. Only the
3rd and 4th bands (which determine the Fermi sur-
face) were used in the calculation. The resultant
x‘(@) exhibits a peak at d= (0,0, 0. 35) x 27/c,
which we believe corresponds to the one found ex-
perimentally. The effect of including matrix ele-
ments in Eq. (4) would probably be to pull the peak
in to a smaller { value. Another peak was found
in the calculation at §=(0, 0, 0. 8) x2n/c, which
would presumably produce an effect on the optical
(4,) branch along I'A. Unfortunately, the poorer
quality of the data for this branch (for reasons
given in Sec. II) precluded any search for an anom-
aly in this branch, It is interesting to note that in
yttrium some evidence was found for small anom-
alies on the A,branch but none was found on the 4,
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FIG. 5. Neutron groups observed in the region of the
anomaly on the A; branch together with peak shapes calcu-
lated using the instrumental resolution function in the
manner described in the text.
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branch.

Finally, we describe a search for spontaneous
antiferromagnetic spin fluctuations among the
conduction electrons of scandium. It is known
that in very dilute alloys of Gd in Sc, the Gd* ions
exhibit considerable moment enhancement over
their free-ion value, possibly owing to the exchange
enhancement of the generalized susceptibility
function x‘® (d) for the noninteracting conduction
electrons. The relatively high density of states
for scandium at the Fermi level and the assumed
peak in ' (§) result in a large exchange-enhance-
ment factor [1-vx®(d)]™! (where v is the exchange
interaction between conduction electrons) for q in
the region of this peak, resulting in antiferromag-
netic correlations transmitted via the conduction
electrons, which would explain the peculiar field
dependence of dilute Gd-Sc alloys.?® Ferromag-
netic coupling of the conduction electron polariza-
tion to the impurity spin would also explain the
giant moment.?! It has further been suggested
that the smallness of the dynamic exchange-en-
hancement denominator [1 - vy’ (d, w)] for certain
values for d close to the “nesting” § would lead
to spontaneous antiferromagnetic spin fluctuations
or paramagnonlike excitations among the conduc-
tion electrons® even though a static moment may
not exist. Such excitations have, in fact, been
recently observed by neutron scattering in the case
of paramagnetic Cr-Mn alloys, 2® which in principle
provides an example of a closely related system.
Accordingly, a search was made for peaks in the
inelastically scattered neutron energy spectrum in
the neighborhood of § =(0, 0, 0. 27) X 27/c which
could be ascribed to this effect. Scans were made
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in both the “constant-Q” and “constant-E” modes,
and also both at room temperature and 4.2 K. The
only significant peak which was observed was a
small one which occurred at the frequency of the
transverse optic (Ag) phonon branch for this wave
vector. Although this process is normally forbidden
for the conditions under which the scans were done
(where Q was always parallel to ), we ascribed its
appearance to a combined one-phonon—Bragg-scat-
tering process. In any case, it did not change in-
tensity or width at all significantly between 295

and 4.2 K, as opposed to the behavior expected of
paramagnons.?* We conclude, therefore, that the
paramagnons in scandium are either extremely
broad or have quite low neutron scattering cross
sections. This would imply that the generalized
exchange-enhanced susceptibility of scandium

. ) 9@, o
AR ST A

[where x'” (4, w) is the unenhanced susceptibility]
does not have any appreciable poles close to the
real w axis.
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The binding energies of transition-metal atoms of the 5d series adsorbed on a 54 transition
metal are calculated in the tight-binding approximation. The general features of the variation
of the binding energy with the number of adatom 5d electrons are similar for all the substrates.
It shows a parabolic behavior with a maximum of the order of the cohesive energy for the sub-
strate, and a subsequent sharper decrease as the number of adatom 5d electrons is increased.
The maximum is always located close to tungsten, as in the case of a tungsten substrate, where

it is between tungsten and rhenium.

Some measurements have been made recently
of the binding energy® and diffusion? of third-tran-
sition-series metals on various single crystal
planes of tungsten, using a field ion microscope
technique. The binding energies were deduced
from field-desorption data and are subject to some
uncertainty in their quantitative determination. 3
However the rise in the adatom binding energy to
a maximum for rhenium, similar to the maximum
in the cohesive energies for 5d transition metals,
and the subsequent sharper decrease as the num-
ber of adatom 54 electrons is increased seem
now well established (Fig. 1).

Several attempts at attaining a theoretical un-
derstanding of the binding energy have already been
made, based either on a tight-binding model, *°
or on a virtual-bound-state model.® Recently,
Newns has also discussed the importance of corre-
lation in this problem.’

It seems more reasonable to study the binding
energy of transition-metal atoms on a transition
metal, by using a tight-binding approach, as the
tight-binding d-band-broadening contribution to the
cohesive energy of transition metals dominates for
the majority of transition metals. %°

Here, we will calculate the binding energies of
the 5d transition-series atoms on a 5d transition
metal, using a tight-binding model, taking into
account somewhat more realistically some param-
eters, such as the real crystalline structure of the
substrate and the degeneracy of the d band. But
consequently, we are only able to take into account
self-consistency in a phenomenological way, and

our results are particularly valid for adatoms
having approximately the same number of d elec-
trons as the substrate.

We use a moments technique, already used with
some fair success to describe various properties
of transition metals. *®° The method and the ap-
proximations have already been described else-
where. 10 Let us just recall that we are using a
Hartree scheme with a tight-binding description
of the d band, neglecting the contribution of the s
band and of s-d mixing. As usual, we use a two-
center approximation involving two kinds of over-
lap integrals, the crystalline ones a, and the
transfer type B, involved, respectively, in the
shift of the d band and its width. The overlap in-
tegrals a and B are strictly defined as 5X5 ma-
trices!® but, in fact, due to the smallness of the
crystalline ones, one can take an average value
a equal to the shift of the band for them. On the
other hand, following the notations of Slater and
Koster, 1 and from the second moment, one can
define the square of an effective overlap integral
g% as 5p%= ddo®+ 2ddn®+ 2dd6®. B%is also directly
related to the width of the d band. '

One starts from aperfect transition-metal M sur-
face and afree transition atom A, and then the atom A
is absorbed on the surface of M, the coupling between
them being established through the overlap inte-
grals. The binding energy Ug(A - M) of the adatom
A can then be defined as the difference between the
total energy before and after the atom A had been
absorbed on M. Clearly the expression of Ug(A - M)
will involve the variation of geometry of the sys-



